Surface antigen cross-linking triggers forced exit of a protozoan parasite from its host.
نویسندگان
چکیده
We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.
منابع مشابه
Serological Evaluation of Experimental Toxoplasma gondii Infection in Cats by Using Immunoblotting Based on an Affinity Purified Surface Antigen
Toxoplasma gondii is an apicomplexan parasite that infects human and almost all warm-blooded animals. The life cycle of the parasite includes an asexual reproduction in intermediate hosts (Mammals and birds) and a sexual reproduction in definitive hosts (Felidae). Cats are both the intermediate and the definitive host for T. gondii. The aim of this study was to investigate anti-T. gondii antibo...
متن کاملA putative Leishmania DNA polymerase theta protects the parasite against oxidative damage
Leishmania infantum is a protozoan parasite that is phagocytized by human macrophages. The host macrophages kill the parasite by generating oxidative compounds that induce DNA damage. We have identified, purified and biochemically characterized a DNA polymerase θ from L. infantum (LiPolθ), demonstrating that it is a DNA-dependent DNA polymerase involved in translesion synthesis of 8oxoG, abasic...
متن کاملSurface antigens of Toxoplasma gondii: variations on a theme.
Toxoplasma gondii is an obligate intracellular protozoan parasite with an exceptionally broad host range. Recently, it has become apparent that the number of surface antigens (SAGs) it expresses may rival the number of genera it can infect. Most of these antigens belong to the developmentally regulated and distantly related SAG1 or SAG2 families. The genes encoding the surface antigens are dist...
متن کاملIntegrative Approaches to Understand the Mastery in Manipulation of Host Cytokine Networks by Protozoan Parasites with Emphasis on Plasmodium and Leishmania Species
Diseases by protozoan pathogens pose a significant public health concern, particularly in tropical and subtropical countries, where these are responsible for significant morbidity and mortality. Protozoan pathogens tend to establish chronic infections underscoring their competence at subversion of host immune processes, an important component of disease pathogenesis and of their virulence. Modu...
متن کاملThe loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii.
The ability of intracellular parasites to monitor the viability of their host cells is essential for their survival. The protozoan parasite Toxoplasma gondii actively invades nucleated animal cells and replicates in their cytoplasm. Two to 3 days after infection, the parasite-filled host cell breaks down and the parasites leave to initiate infection of a new cell. Parasite egress from the host ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 13 شماره
صفحات -
تاریخ انتشار 1996